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ABSTRACT 

The Baer invariants Fn(G) of a group are central extensions of the elements 
3/n(G) of the lower central series. We show that the inclusions 7n+l C 7n can be 
lifted to functor morphisms E,,+l --, Fn and a canonical Lie algebra, analogous to 
Lazard's Lie algebra, can be constructed which is explicitly computable. This is 
applied in various ways. 

The  lower central  series o f  a g roup  is def ined  by 3'1 ( G )  = G and 3'.+1 ( G )  = 

[3'n ( G ) ,  G] where the square brackets  denote  the c o m m u t a t o r .  It is a descending 

f i l t ra t ion  o f  G and the associa ted  g raded  objec t ,  Gn>_IT,(G)/~/,+~ (G) ,  is a Lie 

a lgebra ,  as is well known  [7]. The  Lie s t ructure  comes f rom the c o m m u t a t o r  op-  

e ra t ion  in G. 

In 1945, Baer  [1] descr ibed  an inf ini te  fami ly  o f  ' i nva r i an t s '  o f  the g roup  G. 

Star t ing f rom a free p resen ta t ion  o f  G, i.e. an exact sequence 

1 ~ R - - - ~ F ~ G ~  1 

in which F is a free group ,  Baer showed that  y , ( F ) / [ R , ( n  - 1)F]  and  (R O 

" y , ( F ) ) / [ R , ( n  - I ) F ]  (n ___ 1) are  invar iants  o f  G. Here  [ A , m B ]  denotes  A if  

m = 0 and [ [A,  (m - 1 ) B ], B ] if  m > 0. Baer 's  paper  was his ( remarkable! )  devel- 

opmen t  o f  H o p f ' s  discovery,  in 1942, that  R 0 [ F , F ] / [ R , F ]  is an invar iant  o f  G. 

(Nowadays ,  this is " H o p f ' s  f o r m u l a "  R f) [ F, F] / [ R, F] ~ 1-12 ( G, Z) .  ) 

Some years  ago ,  I d iscovered  an  inf ini te  sequence o f func tor s ,  F n ( G ) ,  which I 

thought  o f  as genera l iza t ions  o f  the concept  o f  'un iversa l  centra l  ex tens ion '  o f  a 

perfect  g roup .  Each  F n ( G )  is a canonical central  extension o f  3~n(G) and if  G is 

perfect ,  all these extensions are equal to the universal central  extension. Only later 
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did I learn of  Baer's old paper and realize that my ' functors '  were Baer's 'invari- 

ants'. (I learnt this from Beno Eckmann who, in turn, knew of  Baer's paper from 

H o p f  himself.) However,  I pursued my approach,  and found that there are some 

things that Baer missed (or could not be expected to get working, as he did, in pre- 

Lazard times). The main point of  this paper is the existence, for each m _ n, 

of  a natural morphism I~m ~ I~n (which is a 'lift '  of  the inclusion 3,,, ~ 3'n) afford- 

ing a canonical filtration of  I ' ,  (G)  such that the associated graded object is an 

explicitly calculable Lie algebra. This Lie algebra comes with a natural surjection 

onto the Lazard Lie algebra. I f  G is a nilpotent group then the canonical filtration 

of  I'~ (G)  is finite; since the successive quotients are quotients of  things known 

to us we get estimates for the order of  r , ( G )  when G is finite nilpotent and for 

the rank of  r , ( G )  when G is nilpotent but not finite. When n = 2 the exact 

sequence 

0 -* H 2 ( G , Z )  --~ F2(G) -* 'y2(G) --* 1 

leads to estimates for H2 (G, Z) which seem quite different from the existing esti- 

mates. The point here is that our filtration of I'2, and hence of H2, does not come 

from a choice of subgroup (as in the 'homological '  approach) but from the images 

in r 2 of the higher functors I'3,I'4 . . . .  and the results are, accordingly, of  a new 

nature (see §10). 

Our definition of I'n is as follows. We define n-central extensions and projective 

n-central extensions. Using the commutator  calculus, we show that if U ~  G is a 

projective n-central extension then 7n(U)  is functorial in G. Then F , ( G )  = 

7~(U) .  It is a canonical central extension of 7, ,(G).  If  one uses a free n-central 

extension, one gets Baer's formula for F~(G). This already shows that the torsion 

of the kernel of  a free n-central extension is an abelian group which is an invari- 

ant of  G (see §5). This simple proof  should be compared with the proof  in [11] of  

the invariance of the torsion in 1he free central case. In §6 is proved the finiteness 

of  I ' , ( G )  when G is finite. It is shown to follow from Schur's original result that 

G '  is finite if G has a central subgroup of finite index. In §7 the canonical filtra- 

tion is introduced and its finiteness in the nilpotent case and its triviality in the per- 

fect case are proved. The Lie structure on the associated graded group gr F (G) is 

introduced in §8 and the main theorem, which is a formula for gr F (G) ,  is proved 

in §9. The result is that g r I ' ( G )  is the ' f ree '  Lie algebra on the abelianization 

of  G. Finally, §10 gives the application of this theorem to estimates of  order and 

rank of F,,(G). These estimates seem to raise interesting questions on the orders 
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of  the homogeneous components of  the free Lie algebra (over Z) modulo relations 

which render its first component  finite. 

In this paper I use a slightly different indexing system than the usual. The def- 

inition of n-central extension is such that a 1-central extension is an isomorphism 

while old fashioned central extensions are '2-central'. Similarly, the higher centers 

are defined by Z I ( G )  = [1}, Zn+1(G)/Zn(G)  = Z ( G / Z , , ( G ) ) ,  where Z(  ) 

denotes 'center'.  My reasons for doing this are twofold. The first is that this is the 

correct indexing relative to the weight of  commutators;  for example, an extension 

is n-central (in this indexing) iff certain weight n commutators are trivial. The sec- 

ond reason is that this indexing gives the 'correct '  graded structure for the Lie al- 

gebra gr I" (G) .  By 'correct grading' I mean that the Lie algebra starts at degree 1, 

i.e., vanishes in degrees _< 0 and is generated by the elements of  degree 1. This is 

very convenient. 

The referee has brought to my attention the works [3], [8] and [10], which treat 

the more general, varietal, definition of the Baer invariants and also give applica- 

tions of these generalized invariants to isologism theory. These works have an over- 

lap with sections 1-4, 6 and the part of  section 7 dealing with perfect groups of this 

paper. But it should be added that these works do not treat the canonical filtra- 

tion and its associated Lie algebra. 

1. Higher central extensions 

A central extension of  a group G is a homomorphism onto G whose kernel is 

central. In our somewhat unorthodox numbering, such extensions are called 2-cen- 

tral, a 1-central extension being simply an isomorphism. The reasons for this num- 

bering are given in the introduction. 

(1.1) DEFINITION. An n-central extension (n >_ 2) is a surjective homomorphism 

X-~  G whose kernel contains a subgroup A which is central in X such that the in- 

duced map X/A  ~ G is an (n - 1)-central extension. In other words, an n-central 

extension is one whose kernel is contained in the n-th center of  X. 

Thus, if n > m, an m-central extension is also n-central. An extension is strictly 

n-central if it is n and not (n - l)-central. 

Clearly, an n-central extension of  the trivial group is a nilpotent group of nil- 

potence class < n. Thus higher central extensions can be thought of  as a 'relativi- 

zation'  of  nilpotent groups. 

It is clear how to define morphisms between n-central extensions: these are just 

commutat ive diagrams 
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X---~ G 

Y-+H 

of homomorphisms where X--, G and Y---, H are n-central extensions. The map 

g is also called a lift off. Note that, given/', it may have no lift and, even when 
a lift does exist, it may not be unique. 

We shall denote by [al ..... a.] the higher commutator [[al ..... a._l],a.]. 
Similarly [A i ..... A.], where AI ..... A. are normal subgroups, is defined. The 
notation [A, mB] is explained above. 

(1.2) LEMMA. Let ~o : X ~ G be a group extension with kernel N. Then it is 

n-central i f f  the higher commutator subgroup [N, (n - 1 )X] is trivial. In partic- 

ular, N is nilpotent in this case. 

PROOF. For n = 1,2 this is trivial. In general we use induction. Let A be a cen- 

tral subgroup, contained in N, such that the associated map X / A  ~ G is (n - 1)- 

central. Denoting X/A  by )7, N/A by ]V, etc., we know by the inductive assumption 

(now n > 2) that [N,(n  - 2)X] = 1, which implies tha t [U, (n  - 2)X] c_ A. This 

means that 

[ N , ( n -  1)X] = [ [ N , ( n -  2 ) X ] , X ]  _ [A ,X]  = [1]. 

Conversely, if [N,(n - I )X] = [1] then A = [N,(n - 2)X] is central in X a n d  

[?~, (n - 2).~] = 1, where the bar denotes 'modulo A'  again. So ~p:.~-,  G is an 

(n - l)-central extension by the inductive assumption. • 

(1.3) COROLLARY. Let X -~  G be an extension with kernel N. Then the associ- 

ated extension X~ [N, ( n - 1 )X] ~ G is n-een tral. 

The corollary will be used primarily when X is a free group. 

2. Commutator  calculus 

We shall use the 'Jacobi-Hall '  identity in its following simple form: if A, B, C are 

normal subgroups of a group then 

[[A,B] ,C]  c [ [A ,CI ,B]  . [A,[B,C]] .  

Instead of [ [A,B] ,  C] we can write [A,B, C] as mentioned before. 

(2.1) LEMMA. Let G be a group and H a normal subgroup. Then, for  every 

n >_ O, m >_ 1, [[H, nG] ,~m(G)  I c_ [ g , ( n  + m)G ] .  In particular, [H,.y,(G)] c_ 

[H, nG]. 
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PROOF. Induction on m. If  m = 1, this is true for every n by definition. Assum- 

ing the result for a given m (and every n), it follows for m + 1 (and every n) by 

Jacobi :  

[[H, nG] ,~'m+t (G)] = [ [ n ,  nG] ,  [2~m(G), G]]  

c_ [[[H, nG] ,~ 'm(G)] ,G]"  [ T m ( G ) , [ [ H ,  nG] ,G]]  

c [ H , ( n  + m + 1)G] .  • 

This lemma implies a more  general result. To state it, let us define a weight m 

higher commuta to r  in Xl,. • • ,xr to be some x ,  if m = 1, and [u,v] where u ,v  are 

commuta tors  (in the same letters) o f  lesser weight and of  weight sum m, if m > 1. 

(2.2) PROPOSITION ( G , H  as above) .  Every  c o m m u t a t o r  o f  weight n in 

x) . . . . .  x n f o r  which s o m e  xj E H i s  in [ H , ( n  - I ) G ] .  

PROOF. If  n -= 1, this is clear. I f  n > 1 and the commuta to r  is [u ,v] ,  and xj 

appears in u, say, then by the inductive hypothesis u E [ H , ( r  - 1)G] and v E 

7 n - r ( G )  for some r satisfying 1 _< r < n. The lemma now gives [ [ H , ( r -  I ) G ] ,  

Yn-r(G)]  _c [ H , ( n -  I ) G ] .  • 

(2.3) COROLLARY. Let X-- ,  G be an extension with kernel N. Then it is n-central 

i f f  every weight n commuta tor  in x~ . . . . .  xn E X ,  o f  which at least one xj C N,  is 1. 

PROOF. This follows directly f rom (2.2) and (1.2). • 

This is the first reason for  my calling an extension n-central,  as I did in (1.I).  

Ano the r  mot iva t ion  for  this unconvent ional  numera t ion  is ment ioned in the 

introduct ion.  

The following is a key technical result. 

(2.4) THEOREM. Let  ~ : X ~ G be an n-central extension; then, f o r  every n ele- 

men t s  Xl . . . . .  xn o f  X ,  the commuta tor  o f  weight n [xl . . . . .  xn] only depends  on 

~(x~) . . . . .  ~ ( x , ) .  

In other  words,  if al . . . . .  an E ker (¢)  then [alXl . . . . .  anxn] = [xj . . . . .  xn]. 

PROOF. Let A c_ ker (9)  be a central subgroup such that  the extension ~ : X = 

X / A  --* G is (n - 1 )-central. By induction we know that [.~l . . . . .  xn-~] ~ ) (depends  

only on ~(-ri) = ~(x i )  E G (i = l , . . . , n  - 1) so that [alxl  . . . .  ,an-lXn-l]  = 

b- [x~ . . . . .  xo-1] where b E A is a certain function o f  a~ . . . . .  a,_~. As b is central, 

lb .  [x, . . . . .  x , - , ] , anxo]  = [[x~ . . . . .  x~_,] ,a ,x~]  and it only remains to show 

that  [[x, . . . . .  x , _ t ] , a , x , ]  = [ [ x l , . . .  , x , _ , ] , x , ] .  
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We will use the identity 

(*) [x, yz] = [x ,y] .  [y ,[x ,z]] .  [x,z], 

which is easily checked. In this identity let x = [Xl . . . . .  xn_~], Y = an, z = xn. 

Then by (2.1) and (1.2), [[Xl . . . . .  x~_~],a~] = 1 and also [a~,[Xl . . . . .  x . ] ]  = 1. 

So we see that  [[xl . . . . .  x~_l] ,a~xn] = [xl . . . . .  x . ] ,  as required. • 

A reformulat ion o f  (2.4) which is free o f  'n-central  extensions'  is this: if X is a 

group and x~ . . . . .  x .  • X then the higher commuta to r  [Xl . . . . .  x . ]  only depends 

on the classes o f  the xi's in X / Z n ( X ) .  

The following two corollaries o f  (2.4) will be important .  

(2.5) PROPOSmON. Let X ~ G, Y --. H be n-central extensions, f :  G --* H 

a homomorphism.  I f  gl, g2:X-~" Y are liftings o f f  then 3'~(gl ) = 3'~ (g2). 

In other words,  for every xl . . . . .  x .  • X, 

[g,(x~) . . . . .  g,(x~)] = [gz(x~) . . . . .  g2(x . ) ] .  

PROOF. This follows directly f rom (2.4) because, for  every x C X. g, (x) and 

gZ(X) differ by an element o f  k e r ( Y - ,  H ) .  • 

(2.6) PROPOSITION. Let f :  G -~ H be a surjective group homomorphism, X--* G 

and Y ~ H n-central extensions and g : X-- .  Y a lifting o f f  Then ~/~ (g) : 7. ( X )  --, 

-f. (Y)  is onto. 

PROOF. Since commuta tors  o f  the type [y~ . . . . .  y . ]  generate 74 (Y), it would 

suffice to show that they are in the image of  3 ' . (g)-  The commuta t iv i ty  o f  the 

diagram 

X---~ G 

e~, { i  

Y - - - - , H  

and the surjectivity o f f  imply that for each i -- 1 . . . . .  n there is ui ¢ X whose im- 

age in H is the same as that  o f  Yi. By (2.4) 

[Yl . . . . .  y . ]  = [g (u l )  . . . .  , g ( u . ) ]  = g(tu,  . . . .  , u . ] )  • g ( ' y . ( X ) ) .  • 

3. Projective extensions 

(3.1) DEFINITION. An n-central extension ~ :  U ~ G is projective if for every 

n-central extension ~b : V ~  H and homomorphism f :  G -~ H there is a lift g : U ~  V, 

i.e. such that  ~ og = f o e .  
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Given a g roup  G, let 7r : F ~  G be an epimorphism with F a free group.  I f  R = 

ker(TQ then the extension ~ : F / [ R ,  (n - 1)F] ~ G is n-central by (1.3). Such ex- 

tensions will be called f ree .  Obviously,  every group has many  free n-central  

extensions. 

(3.2) LEMMA. Free ex tens ions  are projec t ive .  

PROOF. Let f :  G ~ H be a homomorph i sm and V ~  H an n-central extension. 

We need to construct  a map g : 17/[ R, (n - 1 )F]  ~ V lifting f.  As F is free, a map 

h : F ~ V lifting f exists. So h (R) _c ker(V-- ,  H )  and it follows f rom (1.2) that 

h (JR, (n - 1)F])  = 1. Thus h gives rise to a map/~ = g : F / [ R ,  (n - 1)F] ~ V, satis- 

fying our  requirements.  • 

There is another  definition o f  ' freeness '  which rests on the concept  o f  a free ba- 

sis: in this definition, an n-central extension X ~  G is free on a basis xl . . . . .  Xm if 

for  every n-central extension Y --, H,  h o m o m o r p h i s m  f :  G ~ H and elements 

Yt . . . . .  Ym E Y, such that  Yi and xi have the same image in H for every i, there is a 

unique lifting g : X ~ Y satisfying g(x~)  = y~ . . . . .  g(Xm) = Ym. It is not  hard to 

show that  the two definitions o f  freeness are the same, and we leave this to the 

reader. 

F rom the existence o f  projective extensions we have 

(3.3) LEMMA. Let  ~ : U--, G be an n-central  extension.  Then it is pro jec t i ve  i f f  

for  every n-central extension ¢ : V--, G there exists a morph i sm r : U--. V such that 

= ~ o -c ( i .e . ,  a l i f t ing o f  idc) .  

PROOF. The 'only  if '  part  is trivial. Conversely, we must  exhibit for  every 

f :  G ~ H and n-central extension Y ~ H a lift g : U--,  Y for  f .  Let W ~ G be a 

projective n-central extension. Then r : U ~ W lifting ida exists by assumption 

and p : W ~ Y lifting f exists by projectiveness. Then O ° r is a lift o f f .  • 

(3.4) E x a m p l e s  o f  non- f ree  pro jec t i ve  extensions.  The examples that follow 

seem quite 'artificial, '  and it would be interesting to construct more  natural ones. 

They  are based on the fact, proved below in §5, that  the torsion part  o f  the ker- 

nel o f  a free n-central extension is an invariant o f  the g roup  and is, in fact, com-  

mutat ive .  If  U ~ G is a free n-central extension and P is a nilpotent group o f  

nilpotence class < n, then it is easy to see that  the extension U × P ~ G (where 

1 × P goes to 1) is n-central and projective. Clearly, P can be so chosen that 

tors ion(ker(  U ~ G))  is not  isomorphic  to tors ion(ker(  U x P- - ,  G) ) .  This gives 

the desired examples. 

Let  1 -~ R -~ F ~ G --, 1 be a free presenta t ion  o f  G. I f  m _< n, then 

[ R , ( n  - 1)F] _c [ R , ( m  - 1)F] and there is a commuta t ive  diagram 
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F / [ R , ( n -  1)F] ,,~ 

$ G. 

F / [ g , ( m -  1)F] "~ 

I f  we denote  F / [ R , ( n  - 1)F] by U and R / [ R , ( n  - 1)F] by N,  it is clear that  

U / [ N ,  (m  - 1) U] -- E l  [R, (m - 1 ) r ] .  This p roper ty  of  free extensions is shared 

by project ive extensions. 

(3.5) LEMMA. Let  ~o : U ~ G be a project ive  n-central extension with kernel  N.  

Then, f o r  m <_ n, (o: U / [ N , ( m  - 1)U] ~ G is a project ive  m-central  extension. 

PROOF. Let us denote  U / I N ,  (m - 1)U] by V. We must  p rove  that  if  X - ~  H 

is an m-centra l  extension and f :  G --, H a h o m o m o r p h i s m  that  there exists g : V - ,  

X lifting f .  Thinking o f  X - ~  H as an n-central  extension (which it is because n _> 

m) ,  there is a m a p  h : U--, X lifling f So h maps  N into ker (X-- ,  H )  = L. By (1.2) 

[ L , ( m  - 1)X] = [1], so it follows tha t  h ( [ N , ( m  - 1)U] )  = [1} and h defines a 

m a p  h = g : U / [ N ,  (m - 1 ) U] := V ~ X which lifts f ,  as required.  • 

4. The functors I~ 

In homological  algebra, the s tandard procedure to define derived functors of  the 

functor  • is this. Given an object  M (in an abel ian ca tegory  with enough projec-  

fives) take a project ive resolut ion o f  it • • • --, P~ - .  P0 ~ M ~ 0, apply  • to get a 

complex  • • • --, cI,(p~ ) ~ cI,(Po) --. 0 and compute  the homology  o f  this complex.  

We do something  simpler.  

(4.1) DEFINITION. Let U - ~  G be a project ive n-central  extension.  We define 

I'~ (G)  to be 3'~ (U) .  I f  f : G - - ,  H is a homomorph i sm ,  we define I'~ ( f )  as follows. 

Let V ~  H be a project ive n-central  extension,  and f :  U - ,  V be a lift o f f .  Then  

F , ( f )  is 3 '~ ( f ) ,  i.e., it is f considered as a m a p  f rom 3,~(U) to -y,(V).  

PROOF THAT F n IS A FUNCTOR. We have to exhibit, given any two ways to com- 

pute  Fn (G) ,  a unique i somorph i sm between them so that ,  for  any three ways to 

compu te  I'n ( G ) ,  the compos i t ion  o f  any two o f  these i somorph i sms  would equal  

the third. So let ~o : U ~  G and ~b :: W-* G be two projective n-central extensions and 

h : U--.  W such that  ~b o h -- ~o. F r o m  (2.4) it follows that  3'n (h)  : 3'n ( U )  ~ 3'n (W)  

is unique,  i.e. is independent  o f  h. This implies that  "r~ (h)  is the unique i somor-  

ph ism required since if h'  : W--, U is such that  ~o o h '  = ~b then q/~ ( h o h '  ) = "r~ ( h ) o 

7 ~ ( h ' )  must  be the identity of  7 , ( W ) ,  being the (unique!) restriction to 7n(W)  of  

the lift to W of  idc.  Similarly, ,yn(h'  o h) = id~,cu,. 
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The  p r o o f  tha t  I" n of  a morph i sm  is well defined and satisfies Fn(1) = 1 and 

I'~ ( f o  g) = I'~ ( f )  o I'~ (g)  is similar and as easy, and is left to the reader.  • 

I f  ¢ : U-~  G is a projective n-central extension, then clearly ~o maps  7n (U)  onto 

y n ( G ) ,  so y ~ ( U )  is an extension of  y n ( G ) .  I f  N = ke r (¢ )  then ke r (7~(¢) )  = 

N N  Yn(U).  But, by (1.2), [N,7~(  U)] = 1, implying that  N r l  y ~ ( U )  is central in 

7~ (U) .  Now if ~b : W-~ G is another  projective n-central extension and f :  U--* W 

lifts idc,  then clearly 7 , , (~)  o y , , ( f )  = 7,(~o). This proves  

(4.2) PROPOSITION. Fn( G) is a canonical central extension o f  y~( G), i.e., there 

is a morphism of  functors F~ ~ y~ which makes F~(G)  -~ yn(G) a central 

extension. 

In order  to see more  concretely  what  F~ is, we look at  free extensions.  Let 

7r : F ~  G be a surjection,  with F flee,  and R = ker(~r). Let F / [ R ,  (n - 1)F] -* G 

be the associated n-central  extension, then 

(4.3) r n ( G )  = ~(F/[R, (n - 1)F] ) = y n ( F ) / [ R ,  (n - 1)F] .  

As ment ioned  in the in t roduct ion,  the invariance o f  these groups was first shown 

by Baer [1], who considered them as invariants  o f  presentat ions.  

(4.4) EXAMPLES. (1) Suppose  G is a free group.  Then the identi ty is an n-cen- 

tral extension for every n, so F~(G) = yn (G)  in this case. Note that  if we compute  

F~(G)  with other  free presentat ions then the i somorph i sm Fn(G)  -~ 7~(G)  be- 

comes  less obvious!  

(2) Suppose  G is a free abel ian group,  say G ~ Z m. Let F be a free group of  

rank  m and 7r : F - - ,  G a surject ion mapp ing  a basis o f  F to a basis o f  G, so that  

R = ker(7r) is [F,, F ] .  Thus [R, (n - 1)F] = y~+~ (F)  and F~ (G)  = Yn (F)/7~+~ (F).  

Note  that  these are the componen t s  of  the Lie algebra associated with the lower 

central  series o f  E 

(3) Al though  we shall see below the precise s tructure of  F~(G)  when G is a 

finite abelian group,  we now show some propert ies  of  it using simple c o m m u t a -  

tor  identities. Say G is a p roduc t  o f  r cyclic groups  o f  order  mt . . . .  , mr. Let F be 

a free group  on r genera tors  Xl . . . . .  Xr and ~r : F - ~  G the m a p  sending these gen- 

erators to the respective generators of  the cyclic groups.  Then R = ker(Tr) contains 

the c o m m u t a t o r  subgroup  IF, F] so that  "y~(F)/[R,(n  - 1)F] is a quot ient  o f  

the abel ian  g roup  y, ,(F)/ 'Yn+I(F).  I f  a E y , ,_ , (F)  then,  by  (2.1), [a,x m'] E 

[R,(n  - 1)F] .  As F / [ R , ( n  - 1)F] is a quot ient  o f  F/%,+,(F), it is ni lpotent  

o f  class _< n and c o m m u t a t o r s  o f  weight n in it are central.  It follows that  in 
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F / [ R ,  (n - 1)F], the commutator  [a, xi] is central and hence it commutes with 

and 2,. Now we use a well-known commuta tor  identity (see [14], p. 92): 

[x,y m] = Ix, y] m if [x ,y]  commutes with x and y. 

But, in " r ~ ( F ) / [ R , ( n  - 1)F] C F / [ R , ( n  - I ) F ] ,  [d,~ff'] = 1 so [ ~ , ~ ] ~  = 1 and 

we see that the abelian group 7 ~ ( F ) / [ R , ( n  - 1)F] = F~(G) is a torsion group 

and, in fact, an exponent of  G is an exponent for it. 

5. Application: Invariance of the torsion of the kernel of a free extension 

In [11], I proved that the torsion of the kernel of  a free central extension is an 

invariant of  the group. The idea was to show that changing a presentation by an 

'elementary Tietze move'  does not change this group. However, it seems to be dif- 

ficult to analyze the effect of  a Tietze move on a free n-central extension for n > 

2, so that the proof  of  [11] doe,; not generalize to give the invariance of  the tor- 

sion of the kernel of  a free n-central extension for n > 2. Thus it comes as a pleas- 

ant bonus to find that, in fact, this group (it is a group, since the kernel of  an 

n-central extension is nilpotent; see (1.2)) is the torsion part of  ker(Fn ~ 7~)- 

(5.1) THEOREM. Let  F / [ R ,  (n - 1)F] -~ G be a f r e e  n-central extension. Then 

the torsion o f  its kernel  is equal to the torsion o f  (R N 7~ ( F ) ) / [ R ,  (n - 1)F] and 

is therefore central in 3'n ( F ) / [ R ,  (n - 1)F] and  equal to tors ion(ker( I '  n (G)  - .  

7~ (G)) )  ( a manifest  in variant ). 

We denote the group torsion ( R / [ R , ( n  - l ) F ] )  by rn (G) .  

PROOF. Let x E R be such that its class ~ E R~ [R, (n - 1)F] is of  finite order, 

say A m = 1 so that x m E [ R , ( n  - 1)F] .  In particular,  x m E 7~(F) .  But as 

F / ~ , ( F )  is torsion free, x E 7~(F) .  So x E R f3 7~(F) and Y; E R (1 "g , (F ) /  

[ R , ( n  - 1)F] = ker(rn(G) --, w(G)),  and it is shown in (4.2) that F~(G) --, 

7~(G) is a central extension. • 

Because it is important,  and for later applications, we single out the case n = 2. 

(5.2) COROLLARY. T2(G) = to r s ion(H2(G,Z) ) .  In particular, i f  G is fl'nite, 

72(6)  -- H z ( G , Z ) .  

PROOF. Let F / [ R , F ]  ~ G be a free central extension. Then ~'2(G) = 

torsion ( R / [ R ,  F] ) equals, by (5.1), torsion (R (3 [F,, F]  / JR, F] ). But R A [F,, F]  / 

[R ,F]  is H 2 ( G , Z  ) by 'Hopf ' s  formula ' .  • 
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What is the nature of  the higher torsion functors rn (n _> 3) ? Are they also con- 

nected with the homology of  G? This seems an interesting problem. Even without 

an explicit formula for r~ in homological terms, the following would be useful. If 

G is a finite group, Gp a p-Sylow subgroup of  it, then it is shown below (see 

(10.3)) that "rn(Gp) is p-pr imary.  So the inclusion Gp C G induces r~(Gp) -* 

r , ( G ) ( p )  where A ( p )  = {a E A :a of order a power o f p ] .  Is this map surjective, 

as in homology? This would follow if the functor rn had a transfer map (which it 

does for n = 2, by virtue of (5.2)). 

6. Finiteness 

In 1952, Baer proved [2] that if the n-th center of a group X has finite index in 

X then 7n (X) is finite. This generalized Schur's result, which is the case n = 2. 

(Recall that, for us, Z1 = [1 ], Zn+1 ( X ) / Z , ( X )  = Z ( X / Z n ( X ) ) . )  The machinery 

of the present paper applies to Boer's situation as follows. Denote X / Z , ( X )  = G. 

Then X is an n-central extension of  G. Let U-~ G be a projective n-central exten- 

sion of G. There is a morphism f :  U -~ X lifting idc and this morphism maps 

2/~ (U) = I'~ (G) onto 7~ (X)  by (2.6). Thus the following lemma is a rephrasing of 

a special case of  (2.6). 

(6.1) LEMMA. If X--, G is an n-central extension o f  G then 7 , ( X )  is a quotient 

o f r , ( G ) .  • 

Baer's theorem follows now from 

(6.2) THEOREM. If G is a finite group then Fn (G) is finite. 

But (6.2) gives more, in fact. Combined with (6.1), it shows that [Fn(G)[ is 

both the maximum and the least common multiple of the numbers [Tn (X)I as X 

runs on the set of  n-central extensions of  the given group G. This underscores the 

importance of  having good estimates for the orders of the groups Fn (G).  Very 

good estimates are given in § 10 for nilpotent groups and a positive answer to the 

question at the end of §5 (is rn(Gp) --* z~(G)(p)  onto?) would give the correct es- 

timate for [F,(G)[ in general. 

To prove (6.2), we will need three auxiliary results. Essentially, these will reduce 

the proof  to Schur's original theorem. 

(6.3) LEM ~.  Let B be a torsion free abelian group, A a subgroup o f  finite in- 

dex. Then an automorphism of  B fixing A elementwise is the identity. 
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PROOF. The automorphism extends to Q ® z  B = B 0 and is the identity on 

A o. But A o = B o. As B C B 0 t.he automorphism is, necessarily, the identity. • 

(6.4) LEMMA. Let G be a finitely generated group, H a normal subgroup which 

is normally finitely generated. Then [ G, H] is normally finitely generated. 

PROOF. [ G,H]  is the smallest normal subgroup such that division by it 'makes 

H central'. But if x~ . . . . .  Xr generate H normally and y~ . . . . .  Ys generate G, let L 

be the normal subgroup generated by {[xi,yj] : 1 <_ i <_ r, 1 <_ j < s}. Then L _ 

[G,H] and, in G/L, Yci are central so that H / L  is central in G/L. It follows that 

L = [G,H],  so [G,H] is finitely generated normally by {[x~,yj] I. • 

(6.5) PROPOSITION. Suppose .4, B are normal subgroups of  a group G, A c_ B and 

( B : A )  < oo. I f  B is finitely generated modulo [A,G] then ([B,G] : [ A , G ] )  < ~ .  

For example, if A (and thus B) is normally finitely generated then B is finitely 

generated modulo [A,B],  i.e., B/[A ,  G] is finitely generated. 

PROOF. Dividing out [A, G],  it remains to show that [B, G] is finite if A is cen- 

tral (Schur's theorem is the case B = G). By Schur, [B,B] is finite, so it suffices 

to show that [B, G] is finite modulo [B,B]. Thus we can assume that B is abelian 

(and finitely generated). The torsion of B, say T, is now finite and normal in G, 

so it would suffice to show that [B, G] is finite modulo T. Thus we can assume that 

B is also torsion free. We will show that these assumptions make B central, i.e., 

[B, G] = 1: if x E G then conjugation by it fixes A as A is central so, by (6.3), it 

is the identity on B, i.e., B is central in G. • 

(6.6) PROOF OF (6.2). Let ~o : U--, G be a projective n-central extension with U 

finitely generated, and let N = ker(~). As (U:  N)  < ~ ,  N is finitely generated and, 

by (6.4), [N, kU] is normally firdtely generated for every k. Applying (6.5) (n - l) 

times, we see that (~'n (U) :  [N, (n - 1)U]) < co. But, by (1.2), [N, (n - l )U]  = l! 

7. The canonical filtration of F~ 

(7.1) If ¢ :  U ~  G is an n-central extension, xl . . . . .  xn E G and ¢(ui)  = xi for 

i = 1 . . . . .  n then, by (2.4), the commutator  [ul . . . . .  u~] depends only on 

xl . . . . .  x , .  We denote it by 

cu(xl . . . . .  xn). 
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If V--* H is another n-central extension, f :  G--, H a homomorphism and f :  U 

V a lifting o f f  then it is easily seen that the function Co has the f o l lowing func -  

torial behaviour: 

.fCu(X, ..... x . )  = c v ( f ( x l )  ..... f ( x n ) ) .  

In particular, if U ~ G is a projective n-central extension then cu (xl . . . . .  x . )  E 

I ' . (G)  defines a canonical element of F . (G) .  We denote it c(x~ . . . . .  x . ) .  

What are the properties of this function? As seen in (4.4), c(x~ . . . . .  x . )  is, in 

some cases, simply the commutator  [x~ . . . . .  x . ] ,  which is a pretty complicated 

function. We know that in order to simplify the higher commutator,  for example 

to 'linearize' it, one sometimes looks at its residue class in %(G)/ ' y .+~  (G)  = 

gr . 'y (G) .  In our case, we will need to have a natural morphism from r .+l  (G) to 

F . (G) .  

If  U--, G is an m-central extension then it is also n-central for every n _> m. So 

if V--, G is a projective n-central extension there is a map f :  V--* Usuch that the 

diagram 

V..~ 
: $  G 

U /" 

commutes. By (2.5), "Yn ( f )  is unique, i.e. independent o f f .  Moreover, from (2.6) 

we know that the image of • . ( f ) ,  which is f ( 'y .  (V)), is equal to 3/.(U). Taking 

U ~  G to be a projective m-central extension, we get a map f : - y .  (V) = F. (G) --, 

I 'm(G) = %. (U) .  We claim that, in fact, this map is canonical: 

(7.2) PROPOSITION. There is a morphism of functors F. *~', P m ( n  ~__ m) 

which, in the notation above, on -y.(V) is f .  

PROOF. We must show that if Us ~ G is m-central projective, Vj ~ G is n-cen- 

tral projective, f l  : Vl ~ U= lifts idc and gv : Vl ~ V and gu : U1 ~ U also lift idc, 

then the diagram 

gv 
v . ( v~ ) - - ~  ,y . ( v ) 

~m (UI) "~u ~m(U) 

commutes. This follows directly from (2.5) or by noting that b o t h f o  gv and gv  o 

f l  send Cvl (xl . . . . .  x . )  to Cv(Xl . . . . .  x . ) .  • 
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It  is easily seen that  the maps  @~ have the transit ivi ty p roper ty  

4~  ° @~ = ¢ ]  if n _ m _ 1. 

Thus  we get a canonical f i l t ra t ion of  I ' n (G)  by the images  in it o f  r n + l ( G ) ,  

Fn+2(G) . . . . .  F , ( G )  _ im I '~+l (G)  _D im F~+2(G) ~ . . . .  

(7.3) LEMMA. This filtration (henceforth 'the canonical filtration') is central, 

i.e., each imF~+k is normal in r ,  and i m r , + k / i m I ' ~ + k + l  is central in 

P , / i m  Fn+~+l. 

PROOF. I f  U ~  G is a project ive n-central  extension then F~(G)  = 7 , ( U )  and 

i m F , + k ( G )  is equal  to 3`,+k(U), as seen above.  Hence  the l e m m a  is clear. • 

Thus  the quotient  

F ,  ( G ) / i m  F,+I (G)  = gr ,  F (G)  

is an abel ian group  and will be considered as an additive group.  

Wha t  kind of  filtration is the canonical filtration? It will be useful to have some 

(7.4) EXAMPLES. (1) I f  G is a free group  we know that  r . ( a )  = 3`n(a) and,  

clearly, qs~, is the inclusion 3', (G)  a_ 3're(G) and gr ,  r ( G )  = gr,  3,(G).  This exam- 

ple will be used later to deduce propert ies  of  gr F f rom those of  gr 3'- 

(2) If  G is an abelian group then the map  as, ~. : r . ( o )  --, rm(G) is the trivial m a p  

(with image I11) if n > m. (In particular,  Fro(G) is abelian.) Indeed, let U--* G be 

a project ive m-central  extension, with kernel N. Then N_D [ U, U] as G is abel ian 

and  thus [N , (m  - 1)U] _D [ [U,U] , (m - I ) U ]  = 3`m+l(U).  But ,  by  (1.2), 

[N , (m  - 1)U] = 1, so 3`m+l(U) = 11}. As r m ( G )  = 3`m(U) and i m F . ( G )  = 

3`~(U), we see that  i m F ~ ( G )  = I l l  for  n > m. 

This example  has the following, extremely useful,  general izat ion.  

(7.5) PROPOSmON. I f  G is nilpotent o f  class c then for  each n >_ 1 the canoni- 

cal filtration o f  r ,  (G) descends to { 1 ] in c steps, i.e., im F,+c (G)  = { 1 }. In par- 

ticular, r . ( a )  is nilpotent o f  class c. 

As r.(G) ~ 3` , (G) is a central extension, F, , (G) is, of  course,  abelian if n > c. 

But even then,  the canonical  f i l t rat ion m a y  still be nontrivial .  

PROOF. The same as for G abelian. Let U-*  G be a projective n-central  exten- 

sion with kernel  N. As 3`c+11G) = I l l ,  N _  3`,+1(U) and  [N, (n  - 1)U] _ 

3`,+~(U). But,  f rom (1.2), [N,(n  - 1)U] = {1} so 3`,+¢(U) = im F ,+¢(G)  = [1]. 
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At  the other  extreme is the case that G is perfect,  i.e., G = [ G , G ] .  In this case 

we will show that Fn(G) ~ Yn (G)  = G is the universal central extension and each 

~m is an i somorphism for n > m >_ 2, so that  the canonical  fi l tration is trivial. 

We will need the following impor tant  property:  

(7.6) PROPOSmO~. Let U ~ G be an n-central extension and let cu(x l  . . . . .  xn) 

be the residue class in ~/~ ( U)/~/n+1 (U)  o f  cu(x l  . . . . .  x , ) .  Then Cu is additive, i.e., 

f o r  each i, 

~u(X~ . . . . .  x ix[  . . . . .  x . )  = ?u(x~ . . . . .  xi . . . . .  x . )  + ~ u ( X ~ , . . .  ,x" . . . . .  x . ) .  

In particular, if Uis  projective then Cv(X~ . . . . .  x . )  was denoted by c(x~ . . . . .  xn) 

and its residue class in yn ( U ) / y . +  ~ (U)  = gr .  I '  (G)  will be denoted [ x~ . . . . .  xn 1. 

Then the proposi t ion says that  the funct ion {xl . . . . .  x~ } is 'multi l inear ' .  

PROOF. This can be proved directly, but  we can use example (1) above to 're- 

duce '  the p roo f  to ' known '  facts. I f F i s  a free group then Fn(F)  -- y . ( F )  and, for 

Yl . . . . .  Yn E F,, IY~ . . . . .  y~} is simply the class in 7~(F) /7~+t  (F)  o f  the commu-  

tator  [Yl . . . . .  y . ] .  For y./ 'yn+l, one knows that [Yl . . . . .  y . ]  is just the Lie prod- 

uct o f  the classes [y~} E F/[F,,F] = gr~ y ( F ) ,  so it is clear that  {y~ . . . . .  y .}  is a 

multilinear funct ion o f  its variables. I f  F is a free group on letters y~ . . . . .  y s ,y / ,  
. f 

. . . .  y~, there is a h o m o m o r p h l s m  F-- ,  G sending yj to xj and y / t o  x[.  This map 

can be lifted to a map F g U and it is easily seen that the induced map f rom 

g r . P ( F )  to y ~ ( U ) / T n + I ( U )  takes {Yl . . . . .  YiY/ ,  . . . .  y . }  to ( u ( X l  . . . . .  x ixi ' ,  

. . . .  xn). Since this map is additive and {y~ . . . . .  YiY/ . . . .  ,Y~} = {Yl . . . . .  Yi . . . . .  

Y.} + [Yl . . . . .  Yi' . . . . .  y . ]  we get the result that  Cu is also a multilinear function. 

We now turn to perfect groups.  

(7.7) LEMMA. I f  G is a perfect group and U--, G is an n-central extension then 

Y.  (U)  is also perfect.  

PROOF. First we show that  y ~ + I ( U )  = y ~ ( U ) .  F rom (7.6) we know that  

g~:(xl . . . . .  xn), as a funct ion o f  x~, say (i.e., fixing Xl . . . . .  xn_l),  is a homo-  

morphism f rom G to the abelian group y . (U) /y~+~ ( U ) .  But G is perfect,  so 

this map is trivial and so (~(x~ . . . . .  x~) = 1 for all x~ . . . . .  x~. As the elements 

[gu(x~ . . . . .  xn)] generate 7 ~ ( U ) / y . + ) ( U ) ,  this group is trivial, i.e., y n ( U )  = 

7.+1 (U) .  

Thus,  to show that y . ( U )  = [ % , ( U ) , y . ( U ) ]  it is enough to prove that every 

(n + 1 ) -commuta tor  [ u~ . . . . .  u .+l]  E y.+~ (U)  is in [yn (U) ,  "r. ( U)] .  F rom (2.4) 

we know that [u~ . . . .  ,u.+~] only depends on the images o f  the ui's in G. As 
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y o ( G )  = G there exists v E y ~ ( U )  whose image in G is the same as the image of  

u,+~. But this means  that  

[u, . . . . .  u ,+ , ]  = [[Ul . . . . .  u,] ,v]  E [ 3 ' , ( U ) , 3 ' , ( U ) ] .  

This completes  the p roof .  • 

(7.8) PROPOSITION. Let G be a perfect group. Then (i) for  every projective 

n-central extension U ~ G, n >__ 2, the extension 3", (U) ~ G is the universal cen- 

_ " • F . ( G )  tral extension. (ii) For every n > m >_ 2, the natural morphism Ore. 

rm( G) is an isomorphism. In particular, gr ,  I ' ( G )  = O for  every n >_ 1. 

PROOF. It  is shown in Milnor ' s  b o o k  [9, p. 44] that  a central  extension V - ,  G 

is universal  i ff  it is project ive arid Vis perfect .  By (7.7), if U ~  G is n-central  and 

project ive then 3', (U)  is perfect .  We know that  3', ( U )  --* G is a central  extension 

f rom (4.2). To show that  y , ( U )  --, G is project ive let W - ,  G be a central  exten- 

sion. Then  it is also n-central  (n _> 2) and a lift U ~  W o f  id~ exists. Its restric- 

t ion to 3', ( U )  is a lift o f  ido f rom 3', ( U )  to W. This proves  (i). The  extensions 

I ' ,  (G)  = 3', ( U )  --, G and I'm (G)  ~ G are both  universal  central  extensions and it is 

easily checked that  'I'"m is the unique i somorphism between them. This proves  (ii). 

8.  L i e  s t r u c t u r e  

Associated to the lower central  series f i l t rat ion is the graded abel ian g roup  

g r 3 ' ( G )  = @ . ~ l  g rn3 ' (G)  and this g roup  has a na tura l  Lie a lgebra  s t ructure  

(over Z) .  As r n ( G )  is an extension o f  7n (G) ,  there is an associated surject ion 

gr .  F (G)  ~ gr .  y (G)  of  abelian :groups, so we would like gr F (G)  = @ ~o= 1 gr .  I '  (G)  

to have a natural Lie s t ructure  too ,  which would render  the m a p  g r F ( G )  

gr 3' (G)  a morph i sm  o f  Lie algebras,  and so that  everything will be functorial .  

(8.1) THEOREM. (i) For n ,m  >_ l there is a unique map [ , } :grnF(G)  @ z  

g r m i ' ( G )  ~ grn+m I ' ( G )  which, i f m  = 1, sends {xl . . . . .  x , ]  @ [y]  to { X l , . . . ,  

x , , y ] .  This map satisfies the Jacobi identity {[a,b],c] = [[a,c},b} + {a,[b,c]}, 

so that gr I '  with [ , } is a Lie algebra. 

(ii) This Lie structure is natural, i.e. [ , ] : g r i '  ® g r i '  is a morphism o f  

functors. 

(iii) The map gr F (G)  ~ gr 3" (G) is a natural surjective Lie algebra morphism. 

PROOF. (i) The  uniqueness of  such a m a p  is clear f rom the fo rmula  {[xl . . . . .  

x~ l ,{y}]  = [Xl . . . . .  x , , y } .  To prove  existence, let a E gr ,  I ' ( G ) ,  b E grm I ' ( G ) ,  
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let a E I?,(G) and 3 E I'm(G) represent a,b,  respectively, and let U - ,  G, V ~  G 

be projective n- and m-central extensions, respectively, such that o~ E y ,  (U),  3 E 

y m ( V ) .  We need to take the commutator of  o~ and 3. Let W--, G be a projective 

(n + m)-central extension. As U - ,  G is also an (n + m)-central extension, there 

is a lifting f :  W - ,  U o f  ida and, similarly, a lifting W--, V. By (2.6), the induced 

map y ,  (W) --* y ,  (U) is surjective. But, in fact, more is true. If N is the kernel of  

W ~  G then f ( [ N ,  (n - 1) W] ) = 1 and i f f  is the induced map IV / [N ,  (n - 1) W] --* U 

then, by (3.5) and the discussion in (4.1), it induces an isomorphism 

y . ( W / [ N , ( n  - 1)W]) = "y ,~ (W) / [N , (n  - 1)W] -~ y~(U).  

This means that not only is y ,  (W) -~ y ,  (U) surjective, but that the pre-image of  

an element of  y , ( U )  is unique modulo [ N , ( n  - I )W] .  

So let cq E y , ( W )  represent a and 31 E "ym(W) represent/~. By (2.1), [cq,31] 

is in y , + m ( W ) .  We define {a,b} to be the class of  [a l ,31]  modulo y , + m + l ( W ) .  

The proof  that this is independent of  all the choices made is a repeated applica- 

tion of  the identity 

( * ) [x, yz] = [x,y] [y,[x,z]]  [x ,z] ,  [xy, z] = [y,z] [[z ,y] ,x]  Ix, z] ,  

which was already used before. For example, let us prove that the choice of 3 does 

not change the result. If 3 '  E ~m (V) is another representative for b then t3' = r3, 

where r E Ym+l(V). A pre-image 3(, for 3 ' ,  in y m ( W )  must equal r131, where 

rl E [N, (m - 1)W] .y,~+j (W). Indeed, by our considerations above modulo 

[ N , ( m  - 1)W] there is a unique choice of  pre-image for r, and this choice is 

in y m + l ( W ) .  Write rl = r { . r (  with r{ E [ N , ( n  - 1)W], r{' E 3'm+l (W). Then 

[Ot1,'/'1/~1] : [OL1,T1]. [T1,[O~1,31] ] " [C~1,31], 

[ a l , r l ]  = [ a l , r l " r l " ]  ---- [ o q , ' r l ' ] . [ ' r l ' , [ a l , r l " ]  ] . [ a l , r l ' ] .  

Clearly, [ r l, [ a l, 31 ] ] ~ [ N, V,+m ( W)] = [ 1 }. From (2.1) and (1.2) it follows that 

[ a l , r ; ]  = 1. Similarly, [ r f , [ a l , r ; ' ] ]  = 1 and [ a l , r / ]  E y , + m + l ( W )  by (2.1). 

Summing up, we see that [a t ,  r131] = [a l ,  31 ] modulo 'Yn+m+l (V) .  This proves 

that our definition of  [a, b} is independent of  one choice made. The rest of the 

verifications are similar (and as tedious) and will be omitted. 

It is easily verified that [ [ xl . . . . .  x~ }, [ y I } = [ X l , . . . ,  x . , y  }: if Z l ,  " • • , Zn, Z rep- 

resent x, . . . . .  xn, y, respectively, in W then, by our definition, [ [ xl . . . . .  x.  }, { y ] I 

is represented by [[xl . . . . .  x,]  ,y] whose class in gr.+l F ( G )  is just {Xl . . . . .  x , , ,y] .  

If { , } is to be a homomorphism from gr. F ( G )  ® gr., F ( G )  we must prove 
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that it is bilinear. Let us show, for example, that [a + a',b} = [a,b} + {a',b}. 
With U, V, W as above let a, od E "yn (U), /3  E "Ym ( V )  be representatives of a, a', b, 

respectively, and oq,C~l' E -yn(W), 13~ E ~'m(W) representatives of o~,o~',/3, respec- 

tively. We have to prove that 

[O~l 'OQt,~l] ~- [O~l,~l ] " [o~[,~l]mOdyn+m+l(W). 

This follows, again, from (*) for 

: =  

and [ [ J i , a { ] , a l ]  E V,+m+l(W) because n,m _> 1, while [oq',131] and [~1,t31] 

commute modulo 7,+m+1 (W). 
To prove the Jacobi identity for [ , ] we use the following identity of  Hall: 

Given a group X and three elements x ~ -y, (X) ,  y E "ym(X), Z E "yz(X), then 

[[x,y] , z ] .  [[y, z], x].  [[z,x] ,y] = 1 mod Vn+m+l+l ( g ) .  

Let U-~ G, V-~ G, W ~  G, Y--~ G be projective n-, m-,/-, (n + m + 1)-central ex- 

tensions, respectively. To compute something like [ [ a, b }, e I with a E gr, I" (G) ,  

b E grm I ' (G) ,  c E gr t I ' (G) ,  we can proceed by taking representatives x E 7n(U) 

for a, y E "ym(V) for b and z ,~_ "yl(W) for c and Xl E 7 , (Y) ,  Yl E "ym(Y), Zl E 
~t(Y) that map is x,y,z, respectively, under the maps Y ~  U, Y ~  V, Y--, Wthat  

exist by projectivity. Then it is easy to see that {[a, bl ,c} is represented by 

[[x,,y~],z,]. Similarly, {[b,c],a} is represented by [[y,,z~]x~] and {{c,a],b} 
by [[Zl,Xl],Yj].  Thus the Jacobi identity clearly follows from Hall's. 

(ii) The naturality to be prow.~d means that, for every homomorphism f :  G ~ H, 

the diagram 

I . I  
g r F ( G ) ® g r I ' ( G )  , g r F ( G )  

gr r ( f )  ®gr V(f) J, J, gr r(f) 
I ,  I 

g r F ( H ) ® g r F ( H )  , g r P ( H )  

commutes, i.e., gr I" ( f )  is a homomorphism of Lie algebras. This is proved con- 

veniently by a judicious choice of representatives. If a E grn P (G),  b E gr,~ P (G) 

and x E Fn(G),  y E ~m(G) represent a,b, respectively, it is clear that F n ( f ) ( x )  

represents gr, F ( f ) ( a ) ,  etc., so the proof  follows by a straightforward checking 

of definitions. 

(iii) This is also a simple follow-up of  definitions. • 
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9. Computation of gr F (G) 

The explicit computat ion of  gr I '  (G)  is achieved through two results. The first 

is the computat ion when G is abelian, the second is that the abelianization map 

G -~ Gab induces an isomorphism on gr I ' .  

It will be useful to introduce the concept of  'Lie algebra of  a module' .  If  k is a 

commutat ive ring and M is a k-module then 

(9.1) D~FINITION. The Lie algebra of  M (over k) is a morphism of  k-modules 

M ~ ~ (M),  where ~ (M)  is a k-Lie algebra, which is universal, i.e., if M--* L is 

a k-module map of M i n t o  a k-Lie algebra L then there is a unique map £ ( M )  -~ 

L, of  k-Lie algebras, such that the diagram 

£ ( M )  

M + 

L 

is commutative.  

The existence of this construction is shown as follows. First, if M is a free mod- 

ule we can take £ ( M )  to be the Lie-algebra generated by M = TI (M)  in the ten- 

sor algebra T ( M )  = O~=0T, (M) ,  and the "identity" map as the map from M t o  

~ ( M ) .  If  M is not free, there is still a Lie algebra generated by M = T~(M)  in 

T ( M ) ,  but to avoid possible complications we can do the following. Let 0 ~ K--, 

E---, M-- ,  0 be a f r e e  presentation for M, i.e., the sequence is an exact sequence 

of  k-modules and E is a free k-module. In £ ( E )  we identify E as £ t ( E ) ,  i.e. 

£ ( E )  = ~n~=l £ n ( E )  where £ n ( E )  = £ ( E )  O Tn(E) .  Then let I ( K )  be the Lie- 

ideal generated, in ~3(E), by K C  E. Clearly, I ( K )  is a graded ideal and 11 (K) = 

K, so ( £ ( E ) / I ( K ) ) ,  = M. This gives a k-module map from M t o  £ ( E ) / I ( K )  and 

we claim that this arrow has the properties required of the arrow M ~  £ ( M ) .  We 

leave the easy verification to the reader. Note that one can prove directly, using 

the 'Schanuel lemma',  that the correspondence M---, ~ ( E ) / I ( K )  is independent of  

the presentation and is actually functorial. 

In the case of  interest to us, k = Z and the module is a finitely generated abelian 

group G. I f  G ~- Z / m t Z  × • • • × Z / m r Z  then it is clear the ~ ( G )  is the free Lie al- 

gebra on r-generators,  say bl . . . . .  br, subject only to the relations m~bi  = 

0 , . . . , m r b r  = O. 

(9.2) THEOREM. I f  G is a f in i te ly  generated abelian group then gr F (G) = £ (G) 

as graded L ie  algebras. 
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PROOF. As gr~ F (G)  generates gr 11 (G)  by (7.1), the ' identity'  map 331(G) = 

G --, grl F (G)  extends to a Lie algebra surjection 33 (G)  ~ gr F (G),  and this map 

is of  course graded. We will show that it is an isomorphism by exhibiting, for each 

n _> 1, a homomorphism grn F ( G )  --, 33n(G) which is left inverse to 33~ ~ gr, F. 

This would clearly suffice. To define it, we recall the definition of I'~ and grn F in 

terms of a free presentation. 

Let l ~ R ~ F - ~  G ~ 1 be such. Then gr~ F ( G )  = 3"n(F)/%,+l(F)" [R, (n  - 

1)F] .  We know that (~ n~l 3', (F)/3",,+I (F)  = gr 3' (F)  is a free Lie algebra and is, 

in fact, 33 (Fab); see Serre's book [1 5, p. 4.10]. Thus there is a surjection of graded 

Lie algebras gr 3' (F) -~ 33 (G) .  It will be convenient to use the presentation F--,  G 

where, if G ~ Z /m~Z × . . .  x Z / mr Z ,  then F is free on r generators e 1 . . . . .  er 

each mapping to a generator of  the corresponding factor of  G. Then R is gener- 

ated by IF, F]  U [e~ '~ . . . . .  emr]. We will show now that the map  g r , 3 ' (F )  -* 

33~(G) just constructed vanishes on JR, (n - 1)F] "3',+1 (F) /3 ' ,+l  (F) .  Let us de- 

note by {Xl . . . . .  Xnl F the class in gr~3'(F) of  the commuta tor  [xl . . . . .  xn]. It is 

known (and discussed above, see §7 and §8) that [ . . .  I F  is multilinear and the 

value of  [x~ . . . . .  x~} only depends on the classes of  the xi's in Fab. Clearly, 

[R, (n  - 1)F] "3',+1 (F)/3",,+l (F) is generated by the elements {xl . . . . .  Xn} F with 

Xl E R. I f x l  E [F,F] then [Xl . . . . .  x~] E 3",+l(F) and [xl . . . . .  X,,}F = 0. I f  

xl = ej mj then {xl . . . . .  Xn} F = mj.  [ej,x2 . . . .  ,XnlF and we need to show that the 

map gr, 3' (F)  ~ 33~ (G) vanishes on mj-I ej, x2 . . . . .  x ,  }F. I f 2 E G denotes the image 

of  x E F we need to show that the n-fold Lie product [ [ . . .  [~j,22, ],23] " " , 2 .  ] 

in 33n(G) is annihilated by mj. But this is true as e1 is a generator of  the j - th fac- 

tor, Z/mjZ ,  of G, and thus of  o~rder mj. This proves that there exists a homomor-  

phism gr, F (G)  ~ 33n (G) which is onto and which takes [y~ . . . . .  y ,  ] E gr~ I" (G)  

to the n-fold Lie product [ . . .  [Yl,Yz],""" ,Y~] in 33n(G). Since these n-fold Lie 

products generate 33,(G) (as an abelian group) we see that the composi t ion 

33~ (G) --. gr,  I" (G) --, 33~ (G) is lhe identity, because it is the identity on the set of  

these n-fold products. 

This completes the proof.  • 

(9.3) THEOREM. I f  G is a finitely generated group then the abelianization map 

G ~ Gab induces an isomorphism gr I" (G)  ~ gr r (Gab). 

PROOF. AS G -* Gab is onto and gr F (Gab) is generated by grl F (Gab), we 

see that g r F ( G )  --, g rF(Gab)  is onto. To construct a Lie algebra map in the 

opposite direction, note that grl F ( G )  is also Gab , SO the module map 331(Gab ) .= 

Gab ~ Gab = gr I F ( G )  C gr F (G) extends to a Lie algebra map 33 (Gab) -* gr F (G).  

It is easy to see that the composit ion gr F ( G )  ~ grr'(Gab) = 33(Gab) --* gr F ( G )  
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takes [x~ . . . . .  x , ]  E gr, I" (G) to itself. Thus it is the identity, and the theorem is 

proved. • 

10, Applications 

We know, from (7.5), that if G is a nilpotent group of nilpotence c then for every 

n _> 1 the canonical filtration of  r n (G)  ends in I 11, after at most c steps. Thus if 

G is finite we see that Ir.(G)l divides the product Igr.r(G)l. Igr.+l r(G)l . . .  

Igr,,+c-i I ' (G) t .  Similarly, when G is not finite, if we want to estimate the rank of  

r~ (G)  (i.e., the number ~ = 1  dimQ (Q ® 7j (F , (G)) /T j+I(Fn(G)) ) )  then we can 

say that 

C--I 

r a n k l ' , ( G )  _< ~ r ank (g r ,+ jF (G ) ) .  
j = 0  

The groups grin F ( G )  we 'know' quite well: grm F ( G )  ~ ~m(Gab) by Theorem 

(9.2). Following the notation of  [15], if L x  is the free Lie algebra (over Z) on a set 

X of  cardinality d then the group of  elements of  degree m in L x  is a free abelian 

group of  rankld(m)  and there is a wonderful formula for la(n): 

Id(n) = 1 ~ #(m)d~/m (/z(m) is the M6bius function). 
n rnln 

Let us start with the rank estimation. 

(10.1) PROPOSmON. Let G be a nilpotent group o f  class c and let rank(Gab) = 

d. Then for  every n > 1, rank(F , (G))  _< ld(n) + ld(n + 1) + . . .  + ld(n + C -- 1). 

PROOF. The canonical filtration of Fn(G) is 

Fn(G) D imF~+l(G) D ' "  D imFn+c(G) = {11. 

Each quotient in this sequence is a homomorphic image of the corresponding 

gr. F (G).  So its rank is dominated by the rank of the corresponding gr. F (G).  

The rank of  grin I ' (G)  is precisely la(m),  which proves the result. • 

The case n = 2 is of  interest. Then we have the exact sequence 

0 ~ H2(G,Z)  ~ F2(G) ~ 72(G) --' 1. 

This gives the 

(10.2) COROLLARY. I f  G is nilpotent o f  class c and rank(Gab) = d then 

rank(H2(G))  _< la(2) + . . - +  la(c + 1) - rank(72(G)) .  • 
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This result is 'best possible' in the sense that it is an equality for free nilpotent 

groups, i.e., if G -- F/3'c+~ (F) with F free. 

For example, if G is nilpotent of  class 2, we get 

1 1 
r ank(H2(G))  _< ~ (d 2 - d) + ~ (d s - d) - r a n k ( G ' ) .  

This is a new kind of estimate and being 'best possible' should be useful. 

We now turn to estimating the order of  Pn(G) when G is a finite nilpotent 

group. We denote by kn (G)  the order of  £n (Gab). It is possible to write explicit 

formulas for )x,(G) in terms of the function la(m), but these formulas are in- 

volved and we will settle for a numerical example below. As mentioned in the in- 

troduction, the variation of these functions (relative to G) may be of interest. The 

result is 

(10.3) PROPOSITION. I f  G is a finite nilpotent group of  class c then, for every 

n _> 1, [I',~(G) I divides theproduct Xn(G)"~kn+l(G) " "  "X~+c_l(G). • 

As before, the case n = 2 is of  special interest. The result is that IH2(G,Z)I di- 

vides X2(G) • .. Xc+l ( G ) / I  G ' I .  

Let us write out this result in the case c = 2. Say G is a p -group  such that Gab 
is of  order pa and G' is of  order pb. It can be proved (by a somewhat involved in- 

duction) that of  all abelian groups H of  order pa,  i j~, (H)I is maximal when H is 

elementary abelian. Hence we ,zan estimate X~(G) by p/otto. Then our result is: 

IH2(G)I divides pla(2)+l~(3)-b. But la(2) = 1 (a z _ a),  /a(3) = ~ ( a 3 - a ) ,  so 

[Hz(G)[ divides p (a2-a)/z+~'s-')/s-t'. 

This can be compared to the estimate (assuming G '  = Z(G)) 

[H2(G)I <- }G'b a-l" [H2(Gab)[ (see [5]) 

pb(a-l)+a(a-1)/2. 

We see that the dependence on b, for example, is quite different in the two kinds 

of  estimates. 

POSTSCRn'T. After this paper was submitted for publication, I learnt of  the in- 

teresting paper [4] by Blackburn and Evens, in which bounds on the number of 

generators of/-/2 (G, Z) which are similar to those of  (10.3) (in the sense that the 

'Wit t  numbers '  l~(n) occur in them) are obtained.  They also show that  their 

bounds are best possible. But it seems that their results do not cover ours and that 

the Lie algebra approach of  this paper  is quite different f rom theirs. 
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